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Abstract. 16 

 17 

Regional surface temperature trends from the CMIP3 and CMIP5 20th century runs are compared 18 

with observations, and assessed against a backdrop of internal climate variability as estimated 19 

from model control runs.  The simulated internal climate variability is used to assess whether 20 

observed trends are “detectable” and whether the models’ historical run trends are consistent 21 

with observed trends. The trend tests focus on various periods (e.g., 1901-2010, 1951-2010, 22 

1981-2010) and are applied at scales from global averages to individual grid points.  For trends-23 

to-2010 beginning in start years from 1901 to 1981, warming in the CMIP3 and CMIP5 24 

simulations with volcanic forcing is consistent with observations over roughly 40-55% of the 25 

global area analyzed,.  The consistent area in the CMIP5 ensemble is about 5% larger than in the 26 

CMIP3 ensemble, for trends-to-2010 that begin before 1960.  The fraction of analyzed global 27 

area with no detectable trend in the observations is less than 10% for trends covering 1901-2010, 28 

but this fraction gradually grows to over 50%, and is generally slightly higher for CMIP5 than 29 

CMIP3, as the trend start date advances toward 1991. Especially for the trends beginning earlier 30 

in the record (e.g., 1901-2010) the ensemble historical run warming trend tends to be too large at  31 

lower latitudes and too small at higher latitudes.  The analysis identifies regions where detection 32 

of warming trends is less robust (North Atlantic and North Pacific, the eastern tropical and 33 

subtropical Pacific), vs. areas with more robust warming signals (regions from about 40N-40S 34 

except for the eastern tropical Pacific). 35 

 36 

 37 
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 38 

1. Introduction 39 

Are historical simulations, using climate models with the best available estimates of past climate 40 

forcings, consistent with observations?  This question can be examined from the viewpoint of a 41 

number of different climate variables and using different comparison methods.  Here we 42 

compare modeled versus observed regional surface temperature trends, attempting to incorporate 43 

information from a large number of climate models using various multi-model combination 44 

techniques.  We assess historical runs from the Coupled Model Intercomparison Project 3 45 

(CMIP3; Meehl et al. 2007) and compare them with those from CMIP5 (Taylor et al. 2012). 46 

The general approach used here is to compare the modeled and observed trends, in terms of both 47 

magnitude and pattern, by considering trends at each gridpoint in the observational grid, as well 48 

as trends over broader-scale regions.  We use estimated internal climate variability, as simulated 49 

in the various model control runs, to assess whether observed and simulated forced trends are 50 

more extreme than those that might be expected from random sampling of internal climate 51 

variability.  Similarly, we use the available ensemble of simulated forced trends to assess 52 

whether observed trends are compatible with the forcing-and-response hypotheses embodied by 53 

those forced simulations. 54 

Formal detection/attribution techniques often use a model-generated pattern from a single or set 55 

of climate forcing experiments, and then regress this pattern against the observations to compute 56 

a scaling amplitude (e.g., Hegerl et al. 1996;  Hasselmann 1997; Allen and Tett 1999; Allen and 57 

Stott 2003) .  If the scaling is significantly different from zero, the forced signal is detected.   If 58 

the scaling does not significantly differ from unity, then the amplitude of the signal agrees with 59 
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observations, or is at least close enough to agree within an expected range based on internal 60 

climate variability.  Optimal detection techniques also filter the data during the analysis such that 61 

the chance of detecting a signal, if one is present in the data, is enhanced.  An alternative 62 

approach that is less focused on model-defined patterns has been proposed by Schneider and 63 

Held (2001).  In contrast to the optimal detection/attribution methods, we compare both the 64 

amplitude and pattern simulated directly by the models with the observations, without rescaling 65 

of patterns or application of optimization filtering.  Our analysis is thus a consistency test for 66 

both the amplitude and pattern of the observed versus simulated trends (e.g., Knutson et al. 1999; 67 

Karoly and Wu 2005; Knutson et al. 2006).  Other variants and enhancements to this general 68 

type of analysis have recently been presented by Sakaguchi et al. (2012).   More discussion of 69 

various detection and attribution methods and their use in general is contained in Hegerl et al. 70 

2009.  71 

Our general approach in this study is to attempt to mimic observations with the models, in terms 72 

of data coverage over time.  To prevent any one model from dominating the analysis, our 73 

approach attempts to weight the various models roughly equally..  Thus even if one modeling 74 

center provided ten ensemble members and another only one member, or if one center provided a 75 

much longer control run than the others, each of these models would still get an equal weighting.  76 

(Control runs are long runs with a pre-industrial forcings that may change seasonally, but do not 77 

change from year to year.)   Control runs from various modeling centers are weighted equally in 78 

the analysis, as long as the control run length is at least three times the length of the trend being 79 

examined. 80 

 81 
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In this report, the models, methods, and observed data are described in Section 2.   We examine 82 

the model control runs and their variability in Section 3.  Global-mean time series from the 83 

20C3M historical runs are examined in Section 4.  The grid point-based consistency tests are 84 

presented in Section 5.  Section 6 contains some additional trend analysis for data averaged over 85 

larger defined regions.  The discussion and conclusions are given in Section 7. 86 

 87 

2.  Model and Observed Data Sources 88 

 89 

a. Observed data 90 

 91 

The observed surface temperature dataset used in this study is the HadCRUT4 (Morice et al. 92 

2012) which is available as a set of anomalies relative to the period 1961-1990.  The dataset 93 

contains some notable revisions, particularly to SSTs (HadSST3; Kennedy et al. 2011) , relative 94 

to previous versions, so it important to retest earlier conclusions regarding climate trends using 95 

the revised data.  The dataset also contains uncertainty information, in the form of nn-ensemble 96 

members sampling the estimated observational uncertainty.   97 

 98 

To form a combined product of SST and land surface air temperature, Morice et al. (2012) adopt 99 

the following procedure.  If both land data and SST data are available in a particular gridbox, 100 

they are weighted according to the fraction of the gridbox that is covered by land or ocean, 101 

respectively.  A minimum of 25% coverage is assumed, even if the fraction of the gridbox 102 



6 

 

covered by land is less than 25%.  In our study, we use this same procedure to combine SST and 103 

land surface air temperature data sets from the models we analyze.  .   104 

 105 

b.  CMIP3 and CMIP5 models 106 

 107 

Figure 1 displays the complete collection of models from both CMIP3 and CMIP5 used in our 108 

analysis.  The data were downloaded from the CMIP3 (www-pcmdi.gov/ipcc/about_ipcc.php) 109 

and CMIP5 (cmip-pcmdi.llnl.gov/cmip5) model archives.   We regridded the model data from 110 

the 20C3M historical runs and control runs onto the observational grid.  In cases where we 111 

needed to use a combined the model land surface air temperature and SST data to compare with 112 

observations, we used  a procedure resembling that used for the observations, but using the 113 

model’s own land-sea mask.  To mimic the data gaps in the observations, we then masked out 114 

(deleted) model data at times and locations where data were labeled missing in the observations.  115 

Finally, we computed the model’s climatology over the same years as for observations (1961-116 

1990) and then created anomalies from this climatology. This same procedure was used for 150-117 

yr samples from the model control runs for analyses where we wanted to ensure that the control 118 

runs had similar missing data characteristics to the observed data.  119 

 120 

The forcings for the CMIP3 20C3M historical forcing runs are summarized in Rind et al. (2009; 121 

Table 3.6).  An important distinction among the models is the treatment of volcanic forcing. Ten 122 

of the 23 CMIP3 models we examined include volcanic forcing, while 13 do not.  For most of 123 

our assessments, we used 19 of the CMIP3 model, of which eight included volcanic forcing. We 124 
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refer to these sets of models as the “Volcanic” and “Non-Volcanic” models, respectively, and 125 

often distinguish between results for the two types of historical runs in our analysis.  For cases 126 

where we include both sets, we used the term “Volc and Non-Volc” models.   All ten of the 127 

CMIP5 models included in this study included volcanic forcing. 128 

 129 

3.  Model Control Runs 130 

a. Global mean time series 131 

The global-mean surface air temperature series from the CMIP3 and CMIP5 model control runs 132 

are shown in Fig. 1.  Data are displayed with arbitrary vertical offsets for visual clarity.  The 133 

figure also shows the observed surface temperature anomalies from HadCRUT4.  The curve 134 

labeled “Observed residual” was obtained by subtracting the multi-model mean of the historical 135 

volcanic forcing runs.  This is an estimate of the internal variability of the climate system based 136 

on the residual from the estimated forcing response.  137 

 138 

The control runs exhibit long-term drifts.  The magnitude of these drifts tended to be larger in the 139 

CMIP3 runs than the CMIP5 control runs, although there are exceptions.  We assume that these 140 

drifts are due to the models not being in equilibrium with the control run forcing, and we remove 141 

these by linear trend analysis (straight lines on figure).  In some CMIP3 cases the drift proceeds 142 

at a given rate, but then the trend rate becomes smaller for the remainder of the run.  We 143 

approximate the drift in these cases with two linear trend segments, as shown in the figure, which 144 

are removed to produce the drift-corrected series.  The trend for these time periods is computed 145 
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at each model grid point and then subtracted from the model time series.  One CMIP3 model 146 

(IAP_fgoals1.0.g) has a strong discontinuity near year 200 of the control run.  We judge this as 147 

likely an artifact due to some problem with the model simulation, and we therefore chose to 148 

exclude this control run from further analysis. 149 

 150 

None of the control runs in the CMIP3 or CMIP5 samples exhibit a centennial scale trend as 151 

large as the trend in the observations, aside from those with multi-century drifts as mentioned 152 

above.  On the other hand, the variability of observed residual series appears roughly similar in 153 

scale to that from several of the control runs.  Three of the CMIP3 control runs (GISS_aom, 154 

GISS_model_e_h, and GISS_model_e_f) have much lower levels of variability than in the 155 

observed residual series.  For some sensitivity tests on the multi-model assessments, we have 156 

excluded these three models to test for robustness.  The Miroc_3.2_hires model also has low 157 

variability, but the control runs is so short in length that it is used relatively little in our analysis, 158 

since we require the control run record to be at least three times as long as the trend being 159 

examined.  160 

b.  Geographical distribution of variability 161 

 162 

The geographical distribution of the standard deviation of annual mean surface air temperature is 163 

shown in Fig. 2. for CMIP3 models and Fig. 3 for CMIP5 models.  These use the full available 164 

time series from each control run.  The time series have had the long-term drift removed as 165 

discussed in section (a).  The features that stand out most strongly are the enhanced variability 166 

over land regions and in the eastern Equatorial Pacific.   These general features (and magnitudes 167 
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of standard deviation) are also seen in the observations.  The observed standard deviation map is 168 

not shown here because of the relatively short observational record compared with the model 169 

control runs, and the uncertainties in removing the forced variability component from 170 

observations to create an internal variability estimate for comparison to the model control runs.  171 

Versions of the control run standard deviation map which use low pass (> X year) filtered data 172 

(not shown) indicate that most CMIP3 and CMIP5 models have their strongest low-frequency (> 173 

X year) variability in the polar regions and marginal sea ice areas near Antarctica,  Greenland, 174 

and the periphery of the Arctic Ocean.  175 

 176 

4. Global mean surface temperature:  Historical runs 177 

a. Time series of global mean surface temperature 178 

The global mean time series of surface temperature from the 20C3M historical runs are shown in 179 

examined in Fig. 4. Thirty individual experiments using ten different models that include 180 

volcanic forcing are shown in Fig. 4 (a), while 59 experiments using 23 models (with and 181 

without volcanic forcing) are shown in (b).  The model data series combines SST over oceans 182 

and surface air temperature over land, similar to observations, and masks out periods which are 183 

missing in the observed record.  (All timeseries are adjusted to have zero mean in the period 184 

1881-1920.) 185 

The ensemble mean of the CMIP3 volcanic models (red curve in Fig. 4 (a)) agrees remarkably 186 

well with observations (black curve) although the obvious volcanically induced temporary dips 187 

are not in full agreement with the observed behavior for those periods.  Nonetheless, one must 188 

consider the role of internal climate variability in judging whether these differences are 189 
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significant or not.  The observations are generally within the envelope of the large set of 190 

individual model simulations.  The spread of the individual simulations includes the model 191 

uncertainty regarding the forced response, as well as internal variability generated by the models 192 

(e.g., Fig. 1).   193 

The combined volcanic and non-volcanic CMIP3 runs (Fig. 4 (b)) show a substantially wider 194 

envelope of model behavior, as expected with the larger number of models and with the wider 195 

discrepancy in forcing among the models.  Since the “Non-Volcanic” runs have a substantially 196 

less realistic representation of the forcing, we will generally emphasize the “Volcanic” runs in 197 

panel (a) in our forced model assessments in this study. 198 

b. Spectra of global mean surface temperature 199 

Figure 5 shows the spectra of observed global mean temperature and of the individual CMIP3 200 

and CMIP5 “Volcanic forcing” historical runs from Fig. 4.  The enhanced power at low 201 

frequencies is associated with the strong rising trend in both observations and models.  At higher 202 

frequencies (< 10 yr periods) the model spectra are generally within the 90% confidence 203 

intervals on the observed spectral (red lines), although there is some tendency among the models 204 

for lower than observed variability levels at periods less than 10 yr (frequency > 0.1 yr-1). 205 

Overall, the results of these comparisons suggest that the model simulations have a plausible 206 

representation of variability of the climate system, in terms of the spatial pattern of variability, 207 

the spectral of global mean temperature, and the direct comparison of the time series of observed 208 

and historical run global mean surface temperature.  These findings encourage us to use the 209 

models to assess surface temperature trends at the regional scale in the following sections. 210 

 211 
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5. Trend assessment: detection and consistency tests 212 

a. Global means and regional “sliding trend” analysis 213 

In this section we compare the observed and simulated temperature trends to assess whether a 214 

particular class of systematic temperature change (linear trend) signal has emerged from the 215 

“background noise” of internal climate variability, as estimated by the models, and to assess 216 

whether the observed trends are consistent with simulated trends from the historical (20C3M) 217 

runs.  We assess the trends across a wide “sliding range” of start years beginning in 1871.  All 218 

trends use 2010 as the end year.  For CMIP3, we include 19 models overall in the volcanic + 219 

nonvolcanic forcing results, and we include 19 models in the control run samples.  Five models 220 

not included in these assessments, due to drift issues, short control runs (~100 yr), or lack of a 221 

necessary variable (SST) data in the archive.   222 

The general procedure we use is illustrated in Fig. 6 (a) for global mean temperature.  The black 223 

curve in the figure shows the value of the linear trend in observed global mean temperature for 224 

each beginning year from 1871-2000 and ending in the year 2010.  The trend in observed 225 

temperature is about 0.5oC/100 yr early in the record but has increased to over 1.5oC / 100yr by 226 

around 1980.   It has decreased in recent years, being near zero since 2001. The green curve 227 

shows the “mean of ensemble means” for the eight CMIP3 (volcanic forcing) climate models 228 

included, where each of the eight models is weighted equally, even if the modeling center 229 

provided a greater than average number of within-model ensemble members. 230 

The dark blue shading in Fig. 6 (a) shows the 5th to 95th percentile range of trends for the 231 

corresponding window lengths from the long-term drift-adjusted control runs (Fig. 1).  Each of 232 

19 available CMIP3 models contributes equally to this multi-model sample, even if it has a 233 
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shorter control run available.  We require a control run to have at least three times the data length 234 

in question before it is included in our sampling, which is a random resampling technique across 235 

the available data.  The control data was formed into 150-yr segments with random start dates for 236 

the random resampling.  The 150-yr segments were then masked with the observed mask of 237 

missing data over the period 1861-2010 to create data sets with similar missing data 238 

characteristics to the observations.  The analysis in Fig. 6 (a) shows that observed global 239 

temperature trends-to-2010 of almost any length are highly unusual compared to the CMIP3 240 

simulated internal variability—even for trends as short as those beginning in 1990. 241 

The light pink shading in Fig. 6 (a) is a measure of the uncertainty in the CMIP3 20C3M 242 

historical runs and includes the uncertainty due to different specified forcings, different forcing 243 

responses, and the influence of internal variability as simulated by the models.  Under an 244 

assumption that internal variability in the control run is not substantially different from that in 245 

the forced runs, we can use the long control run for each model to estimate the component of 246 

inter-realization uncertainty that would be present in the forced trends; this is helpful, since most 247 

centers did not provide enough ensemble members to precisely assess this component of the 248 

uncertainty.  The each randomly selected control run trend (from the eight models that also had 249 

volcanic forcing runs) is combined with that model’s ensemble mean forced trend for that trend 250 

length, to create a distribution of historical run trends that include the uncertainty due to internal 251 

variability.  The pink region is the 5th to 95th percentile range of this distribution of trends, and 252 

thus relates to the uncertainty of single ensemble members (which mimics the real world, itself a 253 

“single ensemble member”).  In Fig. 6 (a), the black (observed) curve is always within the pink 254 

shaded region, meaning that global mean temperature trends are not obviously different from the 255 

CMIP3 historical run ensemble on any time scale, including for the most recent ‘weak trends’.  256 
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Therefore, for trends with starts through about the mid 1990s, the observed trend in global-mean 257 

temperature is detectable and consistent with the CMIP3 historical runs.  A similar result is 258 

obtained for global mean temperature using the sample of 10 CMIP5 historical runs (Fig. 6 (b).  259 

The pink shading (uncertainty of the forced response, including internal variability) is notably 260 

larger with the CMIP5 runs.  Nonetheless, the observed warming is clearly detectable compared 261 

to the CMIP5 control run variability distribution (blue). 262 

In contrast, when the analysis is applied to the Southeast U.S. region (Fig. 6 c, d) a much 263 

different result is obtained. The observed trend curve (black) rarely lies outside of the blue 264 

shaded region (internal variability) meaning that except for a period from about 1950-1980 start 265 

dates, the trends-to-2010 are generally not detectable in this region.  In terms of consistency with 266 

the model historical runs, the observed trend generally lies within the forced model ensemble 267 

regions (pink shading), implying consistency for trends-to-2010 starting around 1940 and later.   268 

However for start years prior to about 1940, the observations lie near the edge and often outside 269 

of this 5th to 95th percentile range (pink shaded envelopes).  We thus conclude that even  270 

accounting for internal variability, the CMIP3 and CMIP5 historical runs trends-to-2010 tend to 271 

be inconsistent or only marginally consistent with the observed surface temperature trends for 272 

starting dates before about 1940.  That the CMIP3 and CMIP5 models can be falsified on this 273 

relatively small regional scale, means that there remain unexplained discrepancies between their 274 

historical simulations and observations for trends in this region. 275 

b)  Grid point-based detection and consistency assessment 276 

The above procedure can be applied to individual gridpoints and the results displayed in map 277 

form.  To do this, we create categories based on an observed trend’s relation to the control run 278 
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variability (e.g., pink region in Fig. 6) and its relation to the simulated historical run trends, 279 

accounting for uncertainty in the models’ forced responses and internal variability.   For 280 

example, if the observed trend is positive and greater than the forced response (above the pink 281 

region) we conclude that the trend is a “warming – detectable and greater than simulated”.  If the 282 

observed trend is positive and lies within the pink region and outside of the blue region, we 283 

conclude that the trend is “warming – detected and consistent with the simulations”.  If the 284 

observed trend is positive, lies below the pink region and above the blue region, we conclude that 285 

the trend is “warming- detectable but less than simulated.  If the observed trend lies within the 286 

blue region, we conclude there is “no detectable change”.  For cooling trends, we have analogous 287 

terms to those used for the various warming cases, although these cases are relatively rare in our 288 

analysis. 289 

 290 

In Fig. 7 (a), we show the observed surface temperature linear trend map for 1901-2010. The 291 

map shows warming at almost all locations. We assess this warming as highly unusual compared 292 

with the CMIP3 control run (internal climate) variability over most of the global region with 293 

sufficient coverage.  (To determine if a grid point had “sufficient coverage” to include in our 294 

maps and analyzed area, we divided a given trend period (e.g., 1901-2010) into five roughly 295 

equal periods, and required that each of the five periods have at least 20% temporal coverage in 296 

the monthly anomaly data.) Only in about 10% of the analyzed area (white regions in Fig. 7(c) 297 

for CMIP3 and Fig. 8(c) for CMIP5) is the trend not detectable.  In a very small fraction of the 298 

analyzed area (less than 1% in either CMIP3 or CMIP5) is there a detectable cooling trend since 299 

1901, according to our analysis.   300 
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Figure 7 (b) and 8  (b) show the multi-model ensemble trend maps for the CMIP3 and CMIP5 301 

historical runs, weighting each of the available (volcanic) runs equally within the CMIP3 and 302 

CMIP5 analyses.  We used the categorization procedure described above to categorize the 303 

observed vs. modeled trend comparison at each gridpoint (Figs. 7 (c); 8 ( c).  The most common 304 

categorization is of “warming-detected and consistent” (~40% of analyzed regions globally for 305 

CMIP3 and 47% for CMIP5).  The second-most common categorization is of  “warming – 306 

detected and greater than simulated”, which is assessed for 30% (CMIP3) and 35% (CMIP5) of 307 

analyzed regions.    The third-most common categorization is “warming – detected but less than 308 

simulated, which is the case for about 20% (CMIP3) and 10% (CMIP5) of the area analysed.   309 

In Fig. 9, we show how the percent areas that we describe above change for different start years.  310 

This figure also summarizes the aggregate differences between the CMIP3 and CMIP5 results 311 

(solid lines vs. dashed lines).  The percent area where the warming is detected and consistent 312 

with the CMIP3 or CMIP5 model stays consistently between about 40% and 55% for start dates 313 

ranging from 1901 to 1981.  At the same time, the percent of area with no detectable change 314 

climbs steadily from 10% for 1901 start date to about 40% by 1981 start date, and reaches over 315 

50% for 1991 start date.  This illustrates the advantages of a long record for detectability of the 316 

warming trend.  The increase in percent area without a detectable trend, as one slides forward in 317 

time from the 1901 start date, is compensated by a decline in the percent of area with detectable 318 

warming that is either greater than or less than simulated (i.e., outside of the ‘pink envelope’ of 319 

Fig. 6).  The decline is largest for the classification “warming – detected and greater than 320 

simulated”.  Comparing the CMIP3 and CMIP5 models, the two largest differences are:  CMIP5 321 

has about 5% more (~40 vs. 45%) area with detectable and consistent warming than CMIP3 for 322 

trends beginning in the first half of the 20th century, and about 10% less (~10 vs 20%) area with 323 
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“warming – detected but less than simulated” for start dates from 1901 to 1931.  In short, CMIP5 324 

historical runs appear at least slightly more consistent with observed trends than the CMIP3 325 

historical runs are, at least for the case of trends extending from the early 20th century to 2010.  326 

There is slightly less area with detectable warming trends according to the CMIP5 models, 327 

particularly for trends-to-2010 beginning from 1931 start date on. 328 

The corresponding maps for 1951-2010 and 1981-2010 observed trends, ensemble mean 329 

historical run trends, and the categorization maps for those trends for the CMIP3 and CMIP5 330 

models are shown in Figs. 10- 13  (panels a-c).  These show the general spatial patterns 331 

associated with the changes in trend behavior for different start dates and for the CMIP3 and 332 

CMIP5 historical runs noted above.  The loss of detectability, as one proceeds to mid-20th 333 

century start dates, occurs first in the extratropical North Atlantic (north of 40oN) and over large 334 

parts of the North Pacific, extending into the tropics, as seen for the 1951-2010 trends (Figs. 10 335 

c, 11 c).   For the late 20th century start dates (e.g., 1981-2010; Fig. 12c, 13c) the region of no 336 

detectable warming expands to cover most of the southern oceans, south of 40oS, and extending 337 

south from 20oS in the South Atlantic.  This region also expands to include most of the eastern 338 

tropical and subtropical Pacific and much of the northern extratropics over Eurasia, North 339 

America, and the North Pacific.  Tropical and subtropical regions within about 40-50 degrees of 340 

the equator (except for the eastern Pacific) are generally the regions with still a detectable (and 341 

generally consistent) warming signal, for trends beginning as late as 1981. 342 

 343 

The remaining panels (d-n) in Figs. 7, 8, 10-13 show classification maps for  the observed vs. 344 

historical runs, but in this case the metric is percentage of individual CMIP3 or CMIP5 models 345 

that are classified with the particular category for that geographic location and beginning year of 346 
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the trend (all ending in 2010).  That is, the determination of whether a given CMIP3 or CMIP5 347 

individual model is included in a category (e.g., “warming- detectable and consistent”) is based 348 

on the evaluation of the historical runs and control runs for that model alone.  The most 349 

consistent signals across the models are for the “warming – detectable” category, which has all 350 

or almost all models in that category across large areas of the globe for 1901-2010 trends, and 351 

even for much of the tropics and subtropics for the relatively recent trends (1981-2010).  A 352 

notable distinction between the CMIP3 and CMIP5 results in these figures is in the maps of 353 

fraction of models that are consistent with observed trends, including non-detectable changes.  354 

The CMIP5 model ensemble has considerably higher average fraction than the CMIP3 ensemble.  355 

Figure 14 shows a summary statistic for the individual models.   In this figure we compare the 356 

fraction of analyzed area where there is both a detectable change and where the change is 357 

consistent with the individual climate model.  Note that this metric does not include the fraction 358 

of area where a climate model is consistent with observations but there is not a detectable trend.  359 

While all metrics have shortcomings, this particular metric has at least some compensation 360 

effects, where the enhancement of consistency due to increased internal variability is partly 361 

compensated by a reduction in the area with detectable trends for models with increased internal 362 

variability.  We plan to explore other metric approaches that explore this parameter space more 363 

thoroughly in future extensions of this work.      364 

The results in Fig. 14 show that the individual CMIP3 and CMIP5 models have rather similar 365 

behavior in terms of fraction of area with consistent detectable trends.  There is somewhat more 366 

spread among the CMIP5 models (although there are more models in the sample as well.)  This 367 

metric tends to reach a peak value around 1960-1970 start date before declining for later start 368 

dates.    369 
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6.  Extensions and Applications of the Analysis 370 

The analysis presented in this study introduces a framework for trend analysis that has many 371 

possible applications and extensions.  Several of these, which are either planned, in progress, or 372 

completed.  However, we cannot include these here as there are too many figures which do not 373 

fit within the length constraints of the journal.  These extensions are briefly introduced here.  We 374 

are creating a web site based largely on this analysis which will contain a growing collection of 375 

figures that will provide access to many of these extensions and applications as they become 376 

available.  These are briefly discussed below. 377 

a. Sensitivity analyses 378 

A number of questions could be posed about our analysis, such as what do the plots look like for 379 

individual seasons, what if we had used 97th and 2.5th percentiles instead of 95th and 5th, what if 380 

we had left certain “low variability” models (Section 3a) out of the analysis, what if we had used 381 

a different observed data set or observed ensembles from the HadCRUT4 data product and so 382 

forth. Some of these sensitivity analyses have already been completed and are available on the 383 

above web site.  384 

b. Focus on individual regions 385 

Figure 15 shows a number of regions for which we have prepared extensive trend analyses like 386 

that in Fig. 6.  We have done these analyses for various 4-month seasons, using CMIP3 or 387 

CMIP5 models, using 97.5th and 2.5th percentiles, leaving out certain CMIP3 control runs with 388 

lower variability levels, and other sensitivity tests.  The plots are too numerous to present in this 389 

paper, but are accessible on the above web site. 390 
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c. Focus on individual models 391 

Figures similar those in this multi-model analysis can also be prepared for individual models in 392 

the CMIP3 and CMIP5 archive.  We are in the process of producing these.  These analyses may 393 

be of interest as feedback to the individual centers and to others interested in individual model 394 

characteristics.  The results, as they are updated, will be posted to the website above. 395 

 396 

d. Weighting of future projections 397 

Figure 14 shows an example of evaluation of individual models in terms of the fraction of global 398 

analyzed area with trends-to-2010 that consistent with observations.  This analysis suggests a 399 

means of weighting future projections from different models based on the models’ levels of 400 

agreement with past trends as in Fig. 14.  As mentioned above, there are ways of trying to create 401 

improved model comparison metrics, which we plan to explore in a future study.   402 

e. Application to Other Variables 403 

 404 

An extension of this methodology would be explore application to other climate variables such 405 

as precipitation.  We are planning to do this, beginning with precipitation, in upcoming work and 406 

to report on these developments in a future study as well as through updates and extensions of 407 

these on the above web site. 408 

 409 

 410 

7. Summary and Conclusions 411 
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The purpose of this analysis has been to introduce and apply a framework for assessing regional 412 

surface temperature trends from the CMIP3 and CMIP5 models using a multi-model sampling 413 

approach.  We showed the behavior of the various control runs of  the CMIP3 and CMIP5 414 

models.  We used the control run variability to help assess whether observed trends were unusual 415 

or not compared with control run (internally generated) variability.  We also used the control run 416 

variability to help assess whether observed trends were consistent with (or alternatively, 417 

significantly different from) trends from the historical (20C3M) simulations.  In the separate 418 

CMIP3 and CMIP5 analyses, we generally attempt to give different models equal weight, even 419 

when a modeling center provides fewer ensemble members or shorter control runs.  Test are 420 

applied at global and regional scales, as well as at individual grid points on the observed data 421 

grid where there is sufficient data coverage over the period of the trend.  Results are summarized 422 

using classification maps and global percent area statistics.   423 

Our analysis of variability (standard deviation maps, spectral analysis, and time series 424 

inspection) suggest that the CMIP3 and CMIP5 models provide a plausible representation of 425 

internal climate variability, with some likely exceptions which were noted for some models and 426 

regions. 427 

The assessment of the trends allowed us to identify regions where the detection of warming 428 

trends is most robust (in terms of still being detectable, according to the models, for relatively 429 

late start dates, such as 1981).   These regions tend to be in the tropics and subtropics, but outside 430 

of the eastern Pacific, which is influenced by strong interannual variability associated with 431 

ENSO. The reduced global area with detectable trends as one examines later start dates for trends 432 

in the record (all trends ending in 2010) illustrates the advantages of long records for trend 433 

detection in the context of this model-based assessment.  The analysis also suggests a modestly 434 
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closer agreement of models with observed trends for CMIP5 models compared to CMIP3 435 

models—at least for the relatively longer trends-to-2010 that begin in the first half of the 20th 436 

century. 437 

For trends-to-2010 beginning from the early 20th century, about 40-50% of the analyzed regions 438 

globally have a detectable warming that is consistent with the 20C3M historical runs, with 439 

slightly higher percentage for the CMIP5 simulations.  The fraction of area with no detectable 440 

change is only about 10% for trends 1901-2010, but increases steadily to over 50% as the 441 

beginning year is moved forward to 1981.  The fraction of area with detectable and consistent 442 

warming stays relatively constant for start years through about 1981, before falling below 40% 443 

for trends from 1991-2010.  The “loss” of detectable warming regions as one moves forward 444 

with the start dates, is mainly a “loss” in regions with detectable warming that is inconsistent 445 

with the historical runs, which decreases from about 50% for 1901-2010 to less than 10% for 446 

trends 1991-2010.  That is, for the most recent trends (1991-2010), the trends are classified 447 

predominantly as either non-detectable relative to the control runs, or as detectable warming that 448 

is consistent with model historical runs (for both CMIP3 and CMIP5 models).  The shorter the 449 

epoch, the larger the contribution of internal variability to the trend, leading to a greater spread 450 

(uncertainty) for sampled trends. 451 

As has been noted in a previous paper using a similar methodology with two climate models 452 

(Knutson et al. 2006), disagreement between modeled and observed trends in this type of 453 

analysis can occur due to shortcomings of models (internal variability simulation; response to 454 

forcing), shortcomings of the specified specified historical forcings, or problems with the 455 

observed data.  The HadCRUT4 data set (Morice et al. 2012) contains multiple ensemble 456 

members that attempt to characterize the uncertainties in the observations.  We have performed 457 
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some preliminary tests using these ensembles to assess the spread of observed trend estimates.  458 

These tests thus far indicate that even at the regional scale, the spread in trend estimates due to 459 

observational uncertainties, as contained in the ensembles, is generally much smaller than the 460 

spread in model simulated trends due to both internal variability and differences in forced 461 

responses in the historical runs (e.g., Fig. 6).  However, it is possible that other observational 462 

datasets could have somewhat different trends. 463 

We have attempted to at least partially address the issue of uncertainties in the simulation of 464 

internal climate variability and in the response to historical forcing by using multi-model 465 

ensembles.  Nonetheless, the CMIP3 and CMIP5 simulations represent an “ensemble of 466 

opportunity” which cannot necessarily be expected to represent the true structural uncertainty in 467 

results, due to shortcomings/uncertainties in the models and climate forcings.  From a different 468 

perspective, Shin and Sardeshmukh (2011) have noted that the CMIP3 models do not simulate 469 

historical trends of temperature and precipitation as realistically as atmospheric models forced by 470 

observed trends in tropical SSTs—a problem they attribute to model errors as opposed to climate 471 

noise (internal variability).  Clearly there appears to scope for improvement in model simulations 472 

of past trends using historical forcings.  473 

While these issues lack a final resolution, the methodology shown here can at least help to 474 

quantify the uncertainties associated with the climate change detection problem.  The results 475 

show that when CMIP3 and CMIP5 historical runs are confronted with observed surface 476 

temperature variations and trends, across a wide range of trend start dates and at various 477 

geographical locations around the globe, warming is found that is generally much more 478 

consistent with forced simulations than with unforced simulations.  This provides further support 479 

for the claim of a discernable influence of humans on climate, via anthropogenic forcing agents 480 
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like increased greenhouse gases.  A future enhancement of these findings would be to compare 481 

the CMIP5 all-forcing historical runs with runs that include only natural forcings, to provide a 482 

more direct assessment of the roles of anthropogenic versus natural forcings in observed 483 

temperature trends at the regional scale.  484 

 485 

Acknowledgments.  We thank the Met Office Hadley Centre and the Climatic Research Unit, 486 

Univ. of East Anglia, for making the HadCRUT4 data set available to the research community.  487 

We thank the modeling groups participating in CMIP3 and CMIP5, and PCMDI for generously 488 

making the model output used in our report available to the community.  489 

 490 

 491 

 492 

 493 

References 494 

Allen, M. R., and P. A. Stott, 2003:  Estimating signal amplitudes in optimal fingerprinting.  Part 495 

I:  Theory.  Clim. Dyn., 21, 477-491. 496 

Allen, M. R., and S.F.B. Tett, 1999:  Checking for model consistency in optimal fingerprinting. 497 

Clim. Dyn., 15, 419-434. 498 

Hasselmann, K., 1997:  Multi-pattern fingerprint method for detection and attribution of climate 499 

change.  Clim. Dyn., 13, 601-612. 500 



24 

 

Hegerl, G. C., et al. 2009:  Good practice guidance paper on detection and attribution related to 501 

anthropogenic climate change.  Available from IPCC:  www.ipcc.ch/pdf/supporting-502 

material/ipcc_good_practice_guidance_paper_anthropogenic.pdf 503 

Hegerl, G.C., H. v. Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and P. D. Jones, 1996:  504 

Detecting greenhouse gas induced climate change with an optimal fingerprint method.  J. 505 

Climate, 9, 2281-2306. 506 

Karoly, D.J., and Q. Wu, 2005: Detection of regional surface temperature trends. J. Clim., 18, 507 

4337–4343.  508 

Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, 2011:  Reassessing 509 

biases and other uncertainties in sea-surface temperature observations measured in situ 510 

since 1850, part 2:  biases and homogenization.  J. Geophys. Res., 116, D14104, 511 

doi:10.1029/2010JD015220.  512 

Knutson, T.R., T.L. Delworth, K.W. Dixon, and R.J. Stouffer, 1999: Model assessment of 513 

regional surface temperature trends (1949-1997). J.Geophys. Res., 104, 30981–30996. 514 

 515 

Knutson, T.R., et al., 2006: Assessment of twentieth-century regional surface temperature trends 516 

using the GFDL CM2 coupled models. J. Clim., 19, 1624–1651. 517 

 518 

Meehl, G. A. et al., 2007: The WCRP CMIP3 multimodel dataset: A new era in climate change 519 

research.  Bull. Amer. Meteor. Soc. 88, 1383–1394. 520 

 521 



25 

 

Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones, 2012:  Quantifying uncertainties in 522 

global and regional temperature change using an ensemble of observation estimates:  The 523 

HadCRUT5 data set.  J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187. 524 

Rind, D., M. Chin, G. Feingold, D. Streets, R. A. Kahn, S. E. Schwartz, and H. Yu, 2009:  525 

Modeling the effects of aerosols on climate. In Atmospheric Aerosol Properties and 526 

Climate Impacts, A Report by the U.S. Climate Change Science Program and the 527 

Subcommittee on Global Change Research. [Mian Chin, Ralph A. Kahn, and Stephen E. 528 

Schwartz (eds.)]. National Aeronautics and Space Administration, Washington, D.C., 529 

USA. 530 

Sakaguchi, K. X. Zeng, and M. A. Brunke, 2012:  Temporal- and Spatial-scale dependence of 531 

three CMIP3 climate models in simulating the surface temperature trend in the twentieth 532 

century.  J. Climate, 25, 2456-2470. 533 

 534 

Santer, B. D., T. M. L. Wigley, and P. D. Jones, 1993:  Correlation method in fingerprint 535 

detection studies.  Clim. Dyn., 8, 265-276. 536 

 537 

Schneider, T., and I.M. Held, 2001: Discriminants of twentieth-century changes in Earth surface 538 

temperatures. J. Clim., 14, 249–254. 539 

 540 

Shin, S.-I., and P. D. Sardeshmuhk,  2011:  Critical influence of the pattern of tropical ocean 541 

warming on remote climate trends.  Clim. Dyn.,  36, 1577-1591. 542 

 543 



26 

 

Taylor, K.E., R.J. Stouffer, and G.A. Meehl, 2012: An overview of CMIP5 and the experiment 544 

design. Bull. Amer. Meteor. Soc., 93, 485-498. 545 

 546 

 547 

 548 

549 



27 

 

Figure Captions 550 

 551 

Fig. 1.  Timeseries of global mean annual mean surface air temperature (2 m) anomalies from the 552 

CMIP3 (a, b) and CMIP5 (c) preindustrial control runs.   Observed global mean surface 553 

temperature (HadCRUT4, combining SST and land surface air temperature anomalies) is also 554 

shown on the diagrams for comparison.  The curves labeled “Observed residual” or “HadCRU4 555 

residual” were created by subtracting the multi-model ensemble mean surface temperature (from 556 

masked SSTs and land surface air temperatures from the 20C3M historical runs for either CMIP3 557 

or CMIP5) from the observed temperature.  Straight lines (one or two segments) through the 558 

control run time series depict the long term linear drift.  The long term drift over these years is 559 

calculated at each grid point and then subtracted from the model control run series before 560 

performing further analysis in our study.  The various curves have been displaced vertically by 561 

arbitrary constants for visual clarity.   562 

 563 

Fig. 2.  Standard deviation (oC) of annual mean surface air temperature from the CMIP3 pre-564 

industrial control runs (e.g., Fig. 1 a,b). The long term linear drifts (periods identified by the 565 

linear line segments in Fig. 1 a,b) were removed prior to computing the standard deviation. The 566 

individual plots are labeled with the name of the model/center and classified as “Non-V” (non-567 

volcanic) or “V” (volcanic) depending on whether than model’s historical run used in this study 568 

included volcanic forcing or not.  Note that the control runs on which the figure are based do not 569 

have episodic volcanic forcing and have been masked for observed missing data periods.  The 570 

final panel (“obs”) is an observational estimate of internal variability of SST (oceanic regions) 571 



28 

 

and surface air temperature (land regions) constructed by removing the CMIP3 eight-model 572 

ensemble (Volcanic models) estimate of the forced climate response from the observed 573 

temperature record over 1949-2010.   574 

 575 

Fig. 3.  As in Fig. 2 but for the 10 CMIP5 models analyzed in this study.  The final panel (“obs”) 576 

is an observational estimate of internal variability of SST (oceanic regions) and surface air 577 

temperature (land regions) constructed by removing the CMIP5 ten-model ensemble (Volcanic 578 

models) estimate of the forced climate response from the observed temperature record over 579 

1949-2010. 580 

Fig. 4.  Timeseries of global mean surface temperature anomalies (combined SST and land 581 

surface air temperature) from observations (HadCRUT4; black curves) and CMIP3 (a, b) or 582 

CMIP5 (c) 20C3M historical runs (orange curves) in degrees Celsius.  The historical runs in (b) 583 

include 23 CMIP3 models with and without volcanic forcing (as in Fig. 1 (a,b) but excluding 584 

IAP_FGOALS1.0_g).  Those in (a) are from CMIP3 models with volcanic forcing.  All of the 585 

CMIP5 model runs shown in (c) included volcanic forcing.  The red curves show the multi-586 

model ensemble means, which was computed by weighting each model equally (as opposed to 587 

each individual model run equally).  All series have been re-centered so that the mean value for 588 

the years 1881-1920 is zero.  Model data were masked with the observed temporally evolving 589 

missing data mask.    590 

 591 

Fig. 5.  Variance spectra as a function of frequency for observed global mean surface 592 

temperature (combined SST and land surface air temperature), in black with 90% confidence 593 
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intervals shown in red, plotted against spectra for the individual (a) CMIP3 and (b) CMIP5 594 

“Volcanic forcing” historical runs (green) based on the time series in Fig. 4.  The spectra in (c) 595 

and (d) are based on observed or model historical runs where the multi-model ensemble surface 596 

temperature from the 20C3M volcanically forced historical runs is subtracted from the observed 597 

global mean temperature series to form a residual.  Similarly, this multi-model ensemble (either 598 

CMIP3 or CMIP5) is subtracted from each individual historical run to form a modeled residual 599 

for comparison to the observed.  600 

 601 

Fig. 6.  Trends (deg C/100 yr) in surface temperature as a function of starting year, with all 602 

trends ending in 2010, for the CMIP3 (a,c) and CMIP5 (b,d) models.  The black curves are from 603 

observations (HadCRUT4).  The green curves are the multi-model ensemble means, with each 604 

model weighted equally.  The blue shading shows the 5th to 95th percentile range of trends of the 605 

given length based on random resampling of the model control runs, with each model sampled 606 

equally frequently regardless of control run length.  The pink shading shows the range obtained 607 

by using the same control run samples as for the blue shading, but adding onto each control run 608 

trend the ensemble mean trend, from the given start year, of that model’s all forcing run.  Violet 609 

shading shows where the pink and blue shaded regions overlap.  Region used:  Global (a,c) or 610 

the Southeast United States (b,d), with boundaries of the latter region shown in Fig. 15.   The 19 611 

CMIP3 models used here and in subsequent assessment figures include all listed in Fig. 1 except 612 

IAP_FGOALS1.0_g, INGV_ECHAM4, MIROC3.2_hires, MIP_ECHAM5, and NCAR PCM1. 613 

 614 
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Fig. 7.  Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP3 multi-model 615 

(volcanic models) ensemble mean surface temperature trends (1901-2010) in degrees C per 100 616 

yr.  The observed trend is assessed in terms of the multi-model ensemble mean trends and 617 

variability in (c).  In (c) the meaning of the different colors is shown to the right of the color 618 

scale.  Panels (d-h) show the fraction of the 10 individual CMIP3 models whose historical 619 

forcing (including volcanic) runs meet the criteria listed below the panel.  The criteria are:  d) 620 

detectable cooling that is more than simulated; e) detectable cooling that is consistent with the 621 

model; f) detectable cooling that is less than simulated;  g) no detectable change; h) detectable 622 

warming that is less than simulated; i) detectable warming that is consistent with the model; j) 623 

detectable warming that is more than simulated; k) detectable warming (sum of h,i,j); l) 624 

detectable warming that is consistent or greater than simulated (i+j); m) observed and simulated 625 

trends are consistent (including non-detectable changes that are consistent); and n) observed and 626 

simulated trends are inconsistent (1-m). 627 

Fig. 8.  As in Fig. 7, but for the ten CMIP5 models analyzed in the study. 628 

Fig. 9.  Summary assessment of trends-to-2010 comparing the CMIP3 (solid lines) and CMIP5 629 

(dashed lines) multi-model ensembles (historical 20C3M runs with volcanic forcing).  The 630 

fraction of global analyzed areas meeting certain criteria (see graph labels) are shown as a 631 

function of start year. 632 

Fig. 10. As in Fig. 7, but for trends over the period 1951-2010. 633 

Fig. 11.  As in Fig. 7, but trends over the period 1951-2010 for the ten CMIP5 models analyzed 634 

in the study. 635 

Fig. 12. As in Fig. 7, but for trends over the period 1981-2010. 636 
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Fig. 13.  As in Fig. 7, but trends over the period 1981-2010 for the ten CMIP5 models analyzed 637 

in the study. 638 

Fig. 14.  Individual a) CMIP3 and b) CMIP5 models are assessed for consistency with observed 639 

surface temperature trends-to-2010 for start years from 1901 to 1991.  Plotted is the percent of 640 

analyzed global area where each model’s (legend) multi-member ensemble mean forced trends 641 

are consistent (accounting for internal variability) with the observed trends.  The trends are 642 

analyzed at each grid point where there is sufficient temporal data coverage for the trend in 643 

question (see text). 644 

Fig. 15.  Map illustrating regions where trend analyses (like those in Fig. 6, but with additional 645 

augmented analyses as discussed in the text) are available online (web site). 646 

 647 

648 
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 649 

 650 

651 

Fig. 1 

c)   CMIP5 Preindustrial Control runs 

a) b) 

Fig. 1.  Timeseries of global mean annual mean 
surface air temperature (2 m) anomalies from the 
CMIP3 (a, b) and CMIP5 (c) preindustrial control 
runs.   Observed global mean surface temperature 
(HadCRUT4, combining SST and land surface air 
temperature anomalies) is also shown on the 
diagrams for comparison.  The curves labeled 
“Observed residual” or “HadCRU4 residual” were 
created by subtracting the multi-model ensemble 
mean surface temperature (from masked SSTs and 
land surface air temperatures from the 20C3M 
historical runs for either CMIP3 or CMIP5) from 
the observed temperature.  Straight lines (one or 
two segments) through the control run time series 
depict the long term linear drift.  The long term 
drift over these years is calculated at each grid 
point and then subtracted from the model control 
run series before performing further analysis in our 
study.  The various curves have been displaced 
vertically by arbitrary constants for visual clarity. 
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 652 

 653 

 654 

655 

Fig. 2 

Fig. 2.  Standard deviation (oC) of annual mean surface air temperature from the CMIP3 pre-
industrial control runs (e.g., Fig. 1 a,b). The long term linear drifts (periods identified by the 
linear line segments in Fig. 1 a,b) were removed prior to computing the standard deviation. The 
individual plots are labeled with the name of the model/center and classified as “Non-V” (non-
volcanic) or “V” (volcanic) depending on whether than model’s historical run used in this 
study included volcanic forcing or not.  Note that the control runs on which the figure are based 
do not have episodic volcanic forcing and have been masked for observed missing data 
periods.  The final panel (“obs”) is an observational estimate of internal variability of SST 
(oceanic regions) and surface air temperature (land regions) constructed by removing the 
CMIP3 eight-model ensemble (Volcanic models) estimate of the forced climate response from 
the observed temperature record over 1949-2010.   
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 656 

 657 

658 

Fig. 3 

Fig. 3.  As in Fig. 2 but for the 10 CMIP5 models analyzed in this study.  The 
final panel (“obs”) is an observational estimate of internal variability of SST 
(oceanic regions) and surface air temperature (land regions) constructed by 
removing the CMIP5 ten-model ensemble (Volcanic models) estimate of the 
forced climate response from the observed temperature record over 1949-2010. 
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 659 

 660 

 661 

662 

Fig. 4 

a) 

b) 

c) 

Fig. 4.  Timeseries of global mean 
surface temperature anomalies 
(combined SST and land surface air 
temperature) from observations 
(HadCRUT4; black curves) and 
CMIP3 (a, b) or CMIP5 (c) 20C3M 
historical runs (orange curves) in 
degrees Celsius.  The historical 
runs in (b) include 23 CMIP3 
models with and without volcanic 
forcing (as in Fig. 1 (a,b) but 
excluding IAP_FGOALS1.0_g).  
Those in (a) are from CMIP3 
models with volcanic forcing.  All 
of the CMIP5 model runs shown in 
(c) included volcanic forcing.  The 
red curves show the multi-model 
ensemble means, which was 
computed by weighting each model 
equally (as opposed to each 
individual model run equally).  All 
series have been re-centered so that 
the mean value for the years 1881-
1920 is zero.  Model data were 
masked with the observed 
temporally evolving missing data 
mask.    
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 663 

 664 

665 

Fig. 5 

a) CMIP3 global mean temp. spectra b) CMIP5 global mean temp. spectra 

c) CMIP3 global temp. residual spectra d) CMIP5 global temp. residual spectra 

Fig. 5.  Variance spectra as a function of frequency for observed global mean 
surface temperature (combined SST and land surface air temperature), in black 
with 90% confidence intervals shown in red, plotted against spectra for the 
individual (a) CMIP3 and (b) CMIP5 “Volcanic forcing” historical runs (green) 
based on the time series in Fig. 4.  The spectra in (c) and (d) are based on observed 
or model historical runs where the multi-model ensemble surface temperature from 
the 20C3M volcanically forced historical runs is subtracted from the observed 
global mean temperature series to form a residual.  Similarly, this multi-model 
ensemble (either CMIP3 or CMIP5) is subtracted from each individual historical 
run to form a modeled residual for comparison to the observed.  
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 666 

 667 

668 

  

 

Fig. 6.  Trends (deg C/100 yr) in surface temperature as a function of starting year, with all trends 
ending in 2010, for the CMIP3 (a,c) and CMIP5 (b,d) models.  The black curves are from observations 
(HadCRUT4).  The green curves are the multi-model ensemble means, with each model weighted 
equally.  The blue shading shows the 5th to 95th percentile range of trends of the given length based on 
random resampling of the model control runs, with each model sampled equally frequently regardless of 
control run length.  The pink shading shows the range obtained by using the same control run samples 
as for the blue shading, but adding onto each control run trend the ensemble mean trend, from the given 
start year, of that model’s all forcing run.  Violet shading shows where the pink and blue shaded regions 
overlap.  Region used:  Global (a,c) or the Southeast United States (b,d), with boundaries of the latter 
region shown in Fig. 15.   The 19 CMIP3 models used here and in subsequent assessment figures 
include all listed in Fig. 1 except IAP_FGOALS1.0_g, INGV_ECHAM4, MIROC3.2_hires, 
MIP_ECHAM5, and NCAR PCM1. 
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 673 

674 Fig. 7.  Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP3 multi-
model (volcanic models) ensemble mean surface temperature trends (1901-2010) in 
degrees C per 100 yr.  The observed trend is assessed in terms of the multi-model 
ensemble mean trends and variability in (c).  In (c) the meaning of the different colors is 
shown to the right of the color scale.  Panels (d-h) show the fraction of the 10 individual 
CMIP3 models whose historical forcing (including volcanic) runs meet the criteria listed 
below the panel.  The criteria are:  d) detectable cooling that is more than simulated; e) 
detectable cooling that is consistent with the model; f) detectable cooling that is less than 
simulated;  g) no detectable change; h) detectable warming that is less than simulated; i) 
detectable warming that is consistent with the model; j) detectable warming that is more 
than simulated; k) detectable warming (sum of h,i,j); l) detectable warming that is 
consistent or greater than simulated (i+j); m) observed and simulated trends are 
consistent (including non-detectable changes that are consistent); and n) observed and 
simulated trends are inconsistent (1-m). 
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 676 

677 

 

Fig. 8.  As in Fig. 7, but for the ten CMIP5 models analyzed in the study. 
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678 Fig. 9. 

Fig. 9.  Summary assessment of trends-to-2010 comparing the CMIP3 
(solid lines) and CMIP5 (dashed lines) multi-model ensembles 
(historical 20C3M runs with volcanic forcing).  The fraction of global 
analyzed areas meeting certain criteria (see graph labels) are shown as a 
function of start year. 
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 679 

 680 

Fig. 10. As in Fig. 7, but for trends over the period 1951-2010. 
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681 

Fig. 11.  As in Fig. 7, but trends over the period 1951-2010 for the ten CMIP5 models 
analyzed in the study. 
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682 

Fig. 12. As in Fig. 7, but for trends over the period 1981-2010. 
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683 

Fig. 13.  As in Fig. 7, but trends over the period 1981-2010 for the ten CMIP5 models 
analyzed in the study. 
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 684 

685 

Fig. 14 

a) 

b) 

Fig. 14.  Individual a) CMIP3 and b) CMIP5 models are assessed for consistency with 
observed surface temperature trends-to-2010 for start years from 1901 to 1991.  Plotted 
is the percent of analyzed global area where each model’s (legend) multi-member 
ensemble mean forced trends are consistent (accounting for internal variability) with the 
observed trends.  The trends are analyzed at each grid point where there is sufficient 
temporal data coverage for the trend in question (see text). 
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 686 

687 Fig. 15 

Fig. 15.  Map illustrating regions where trend analyses (like those in Fig. 6, but 
with additional augmented analyses as discussed in the text) are available online 
(web site). 


